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The essence of mechanical design is nterplay between

human creativity and incisive analysis. The procedure for i

designing a critical component or structure typicaily runs as:
|. Prepare a candidate design.
> Analyze the design using the finite element (FE) meth-
od.
(a) Model the designed structure and its loading and
constraints.
(b) Analyze the loaded model.
(c) Assess the validity of the analytical results.
(d) Repeat steps 2(a—<) until acceptable analytical
results are obtained.
3. Assess the candidate design.
4. Repeat steps 1—3 until the design is acceptable.
Thus the design process is doubly iterative because cur-
rent FE techniques are not single-shot blackbox tools with

:: guaranteed reliability; they require human judgement and

“tuning.”” It follows that the (injefficiency of the inner
analysis loop is a strong determinant of the quality of the
final design when the cost of design matters, as is usually the
case. If analysis can be made cheap, fast, and reliable, more
alternatives can be considered and better designs will resuit.

Let's look more closely at the analysis procedure. During
step 2(a), the design is modeled as a properly connected
mesh of suitably sized and shaped elements (triangles.

; quads. etc.) from an element library. Its loading and con-

straints are modeled by assigning suitable constants (e.g.
displacement and load values) to particular nodes of the
mesh. The operative words here are “suitably sized and
shaped™” and "‘properly connected’". If the elements are too

. large or have bad aspect ratios. or if the mesh as a whole

does not obey the combinatorial sharing rules of FE mesh
decompositions, inaccurate and inconsistent resuits will
accrue because the mathematical conditions underlying the
FE method will have been violated. In the early days of FE
analysis, the analyst was wholly responsible for mesh and
element integrity. Today, computer graphics preprocessors
help ensure proper connectivity. but the selection, piace-
ment. and sizing of elements are still the user’s responsibil-
ities.

Step 2(b), analysis of the loaded model, is usually per-
formed by using a standard code such as Nastran and Ansys.
This step is largely automatic, and the popular codes are well
debugged though sometimes expensive 1o run.

For step 2(c), assessing the validity of the results, there
are no standard methods and the analyst’s judgement plays a
critical role. In the early days, when “results’’ were huge
tables of numbers, assessment was largely a black art.
Graphics postprocessors, which can display colored contour

plots of stresses, temperatures, and so forth. enable experi-
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enced analysts to identify trouble spots (such as regions with
high cross-element gradients) quite effectively.

During step 2(d), the analyst refines the mesh by subdivid-
ing troublesome regions into smaller elements, and then
reanalyzing the whole.

Obviously, automation of the whole process will make
design more systematic and efficient by replacing the ana-
lyst’s judgement with mathematical criteria. Two new tools
make automation of the FE mesh feasible:

® Solid modeling technology {1. 2] enables designers to
create and store in CAD systems informationally complete
‘‘master models’’ of mechanical parts and products. From
there, one should be able to generate FE meshes automati-
cally.

o New algorithms for analyzing errors in a finite element
analysis [3—7] systematic means to automate the results
assessments of step 2(c).

One more tool is needed: a good method for using error
indicators to refine the FE mesh automatically. Another
tool, while not essential, is also very desirable: a method for
analyzing refined meshes selectively or incrementally so that
results already computed for unmodified regions of a mesh

can be reused rather than recomputed.

Figure | shows a design for an automatic analysis system. .
In this system. the user defines the structure to be analvzed
in the Solid Modeling System (SMS) together with attributes :
such as boundary conditions. loads. matenial properties. and
certain analytical parameters. The mesh generator produces
a discretized model (the FE mesh) from the geometric !
definition and attribute specifications. (Attributes can deter-
mine., for example. the positions of some nodes.) The
analysis processor performs FE analysis: it computes prima-
ry and secondary field variables (in general. the dispiace-
ments vector at nodal points and the stress tensor within the
elements) for the loaded and constrained FE mesh. Finally.
the error evaluator compares error estimates derived from
the analysis output with specified tolerances. and either
accepts the results or requests a new analysis of a modified *
mesh. In the latter case, the error evaluator indicates the
regions in the current model that require refinement. The :
inner mesh-generation loop and mesh-analysis loop in Figure °
I connote localized mesh refinement and incremental reanal- .
ysis.

This approach to automatic FE analysis has been embod- ¢
ied in an experimental 2-D system whose underlying princi-
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ples will be explained. (Our actual implementation is some-
what different than Figure 1 for reasons of computational
efficiency.) All meshes and analytical results that appear in
this article were produced with this experimental system.
This article summarizes a moderately complicated topic: for
technical details, see [8].

Automatic Mesh Generation

Most *‘automatic’* meshing utilities in contemporary CAD
systems actually operate from wireframe descriptions of
objects via mapping algorithms. The user must partition the
domain, which is represented by a collection of edges. intoa
set of topologically simple subdomains in which meshes can
be generated automatically. This approach is unsuitable for a
fully automatic meshing procedure because it depends on
human judgement both to guide meshing and to resolve
ambiguities in the wireframe representation.

Genuinely automatic mesh generation must start from an
unambiguous representation of the object to be analyzed,
and thus needs some form of SMS. Nearly all current SMS
systems are based internally on one or both of the represen-
tation schemes illustrated in Figure 2 [1, 2]. Constructive
Solid Geometry (CSG) exploits the notion of ‘*adding’’ and
“subtracting"* simple solid building blocks (via set-union and
set-difference operations). Boundary schemes describe so-
lids indirectly via sets of faces which are represented by sets
of edges that bound finite regions of surfaces. The vanous
schemes that have been proposed for automatic mesh gener-
ation can be divided into two families: recursive spatial
subdivision (quadtree and octree) schemes, and triangulation
and other schemes. After a brief discussion of the second
family, we will focus on the first.

Triangulation and Other Schemes

Wordenweber [9] and Cavendish [10] have developed two
different two-stage approaches to automatic triangulation of
solid domains. Wordenweber's procedure first does surface

triangulation of the boundary of the solid. and then performs 5
solid triangulation in the interior. The tetrahedral meshes
that result are coarse and usually contain distorted elements |
that must be refined to be useful for analysis. i

In the Cavendish method. points are injected into the
solid. and then a solid triangulation is induced in which the |
points become nodes of tetrahedral elements. The main :
working tool of the second-stage triangulation is a Delaunay '
algorithm that generates valid meshes of tetrahedral ele-
ments within convex hulls of node points. Good methods are
still being sought for inserting points automatically dunng
the procedure’s first stage.

In both of these approaches, mesh refinement is done by
splitting existing elements. Because refinement is driven :
from an FE mesh rather than from the original solid model.
refinement does not improve the geometric approximation of
the original solid. Also, the meshes are not spatially address- 1
able. L

A few commercial CAD systems claim automatic meshing
facilities that can involve triangulation but the principles are -
proprietary. Lee's method [11], which has been described
publicly and implemented in 2-D, exploits the decomposition
inherent in CSG representations rather than triangulation or
spatial subdivision. Briefly, Lee generates *‘natural’’ distn-
butions of points in each CSG primitive and then induces a
uniform spatial distribution of points over the whole object
by *'thinning’" points in regions where primitives overlap: a !
mesh of quadrilateral and triangular elements is then grown l
over the points in the object. \'

|

We approximate the object to be meshed with a union of
disjoint, variably sized rectangles (in 2-D) or blocks (in 3-D). "

Recursive Spatial Subdivision

These are generated by recursively subdividing a spatial

region enclosing the object, rather than the object itself. |

Figure 3 shows a 2-D exampie. (
The object (a rounded plate with a hole) is “boxed™ 10 |
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establish a convenient minimal spatial region. and ther the
box is decomposed into quadrants. When a quadrant can bc
classified as wholly inside or outside of the object. subcivi-
sion ceases: when a quadrant cannot be so classified. 1t is
subdivided into quadrants. So this process continues ur::
some minimal resolution level is reached. (In 3-D. the
decomposition proceeds by octants.) Approximations pre-
duced this way can be represented by logical trees who-:
nodes have four or eight sons (see Figure 3). hence t:c
popular names *‘quadtree’’ and “‘octree™ [12].

As we will explain, inside cells of a spatial decompositiur
can be easily converted into “‘nice’’ mesh elements. tu.
boundary cells require further processing lest their litera:
translations into mesh elements introduce bogus high-gra.:-
ent stress regions in the analytical results. We'll deal wiin.
boundary-cell processing later; for the moment. assume tf.”
the **B’" cells in Figure 3 are somehow reshaped into va.i¢
mesh elements that closely approximate the object’s boun..
ary. '

Recursive spatial decompositions have two intrinsic pror-
erties. hierarchical structure and spatial addressability. tha:
are central to the mesh refinement and incremental analys:is
techniques described later. These intrinsic properties. plus
an extrinsic (engineered) property called logical addressabi-
lity. warrant discussion.

Hierarchical structure. The tree structure in Figure 2
results from the subdivision rule used to produce the asom.-

position, and one can think of the tree as an orgamizing or .

cataloging structure for data describing particular regions of
space.

Figure 4(a) illustrates this notion by showing a data record

associated with each node of the tree: Figure 4(b) show s data

pertinent to automatic mesh generation that might be stored
within such a record. These include classification of the
spatial region represented by the node as inside, outside. or
on the boundary (Figure 3); shape functions for a few

and properties associated with the finite elements. such as
one or more stiffness matrices, external constraints, and so
forth.

At the lowest level of the tree one finds the smallest spatial

_(typically one) finite elements associated with the region; '

regions and simplest finite elements. As one ascends the tree

the regions become larger (encompassing multiples of four or

eight elemental regions) and the finite elements become ;
superelements with associated (*‘assembled’’) stiffness ma-

trices, collected constraints, and so forth. Such an organiza-
tion is ideally suited to mesh refinement by subdivision and
incremental mesh analysis.

Logical addressability. Given the notion of a tree as an '

organizing structure for hierarchical spatial data, how should .

such a structure be mapped into computer storage as a data
structure. and how does one gain access to it to store and
retrieve data? The tree diagrams in Figures 3 and 4 suggest
the classical approach: represent a tree with a linked list in

! which nodes are addressed indirectly through downward

pointers to sons and perhaps lateral pointers to siblings. The

data record associated with each node is addressed through a
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special pointer stored with the node. Thus one has access to
data by following pointers downward from the root of the
tree.

Alternatively. a recursive spatial decomposition can be
viewed as a directly addressable hierarchical grid (see Figure
5) in which the number of cells in each linear dimension is an
integer power of two. The key here is a systematic scheme
for numbering all possible nodes of the underlying tree. In
Figure S(a), *'1'" represents the enclosing box, 2—5 repre-
sent specific quadrants of **1,” **6"'—""9"" represent quad-
rants of **2," and so on. The underlying relation, which can
be applied recursively, is:

The four sons of a parent node Pare [4 =P — 2,4« P-1,
4+P,4«P ~ 1], and the parent of Pis (P + 2) div 4.

These numbers can be used as indices for a single array of
pointers to data records, as shown in Figure 5(c). Thus, to
access the spatial data for a particular node in the underlying
tree. one merely calculates an array index through a simple
formula and follows the single pointer stored there. This is
usually much faster than the pointer-following method noted
above but it carries a storage penalty. Specifically. the
pointer array in Figure 5 (¢) must be large enough to
accommodate all possible nodes in the tree.

If the lowest-level grid in Figure 5 (a) requires N*N*K
units of storage (N*N*N*K in 3-D) for pointers and data
records. one needs:

K - (20 » (1l
20 -
units of storage for the worst-case whole tree. where D is the
dimension of the space and *‘log’ is log-2. Thus a 2-D
hierarchical grid requires at most about 33 percent more
storage than the N*N*K units needed for its lowest level: in
3-D only about 14 percent more storage is needed.

- log\y _

1)

Spatial addressability. Suppose that we know the geomet-
ric size and spatial position of the **1" cell (the overall box)
in Figure S5(a). We can quickly compute the index of any cell
in the hierarchy from its size and position. and conversely
from an index we can quickly compute the size and position
of the associated spatial cell (an example is in Table I). We
have already seen that cell indices allow access through a
single pointer to data associated with the cell, and thus we
can associate, without searching, spatial regions with stored
data and stored data with spatial regions. This is what is
meant by spatial addressability.

In practical terms, if a particular region of an object proves
troublesome either in mesh generation or mesh analysis, one
has direct access to pertinent mesh and analytical data to
take localized corrective measures.

An Automatic Meshing Procedure
Based On Spatial Subdivision

This procedure produces a spatially addressable FE mesh
embedded in the lowest level of a hierarchical gnd. Higher
levels of the grid are used during construction of the mesh
and when the mesh is analyzed. refined. and incrementally

SMS of the object to be meshed. and operates in two stages.
The first stage meshes the interior of the object by spatial
subdivision and the second extends the mesh to the object’s
boundary. The following descriptions are in 2-D: 3-D exten-
sions are in the final section.

The use of quadtree and octree methods for automatic
mesh generation was pioneered by Shephard and Yerry [13.
14]. Our work is similar to theirs but important differences
will be noted as we go along.

Stage 1: interior meshing. The object S. Figure 6ta). is
enclosed in a box, Figure 6(b). which is recursively subdi-

contains more than one connected boundary segment of S.
As the subdivision proceeds the cells are classified as being
“IN"* S, **OUT" of S, or neither in nor out (""NIO™. Cells

. . . !
reanalyzed. The procedure starts with a representation in an |

vided into a grid whose smallest cell size determines the |
element size (or element density) of the initial FE mesh. This -
minimal size is determined by subdividing cells until no cell

—

S
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classified as IN at higher levels in the hierarchy ar: supdi-

ﬁ P1 vided to the final grid size without further classificaticr. The

{ ‘ bS . C . . . L

: \ e collection of IN cells constitutes the interior mesh ¢ ¢

: ‘ bIS The main computational utility used for cell class:iication

P2 is the modified cell classification procedure:
ModClassCell(cell, solid) = ("IN™", "OUT™".*
“

. = which is described in [15].

R &) ModClassCell tests a cell to determine if it is enurely
inside the solid. entirely outside. or undetermined. iz ~*?"
cells are further subdivided and tested. Stage | en.i: w:th
special operations that reclassify final-sized **?"" cell~ - IN.

]

N

L

:'t" 7 Qenersation of bS nodes in stage 2 of the meshing aigo-
hm.

Y
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Fig. 8 Eiement generation via linking bS and b/S nodes.

OUT. or NIO. (Some might think that **?** cells must alwavs
be NIO. but this is not true for Lee's efficient use ¢! the !

classification procedure. which assumes a CSG reprerenia-
tion of the solid S [15]. Although CSG implementatior~ can
be designed to insure that **?"° cells are NIO. an. tre
procedure can be used for solids represented in boundan
format. both approaches are computationally expens: ¢

Specifically, the vertices of each final *?*" cell are clas<-
fied: if one to three vertices are OUT, the cell is NIC. In
cases where all four vertices have the same classification the

cell is classified as:

if (Cell N* S = 0) then ""OUT"’
eise if (Cell N* S = Cell) then "IN’
else “*NIO™

where N* is the regularized intersection operater [16].
Methods for performing the tests above are described in (8],

We note that the Shephard-Yerry cell classification proce-

dure [13. 14] is based on in/out tests of cell vertices. with
some special operations performed on vertices of cells .
having uniform vertex classifications. In/out tests on veru-

ces are insufficient because cells containing holes or thin
sections might be misclassified.

§
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Stage 2: boundary-region meshing. The task here is to fill
the region between the boundary of the interior mesh

N‘:.‘::_ﬁs\ i (denoted bIS in Figure 7) and the boundary 4§ of the solid .
- Observe that: i

- > bS C (U “NIO"™ cells) U bIS

- = Thus bS is usually contained in the NIO cells and special i
o —_ — * \ element-building operations are required. but sometimes
| - -+ - segments of bS coincide with bIS. as at the top of Figure
s ‘7"\—’—’—*—‘—‘—\ 6(b). and no special processing is needed. We can mesh the
v *—f interboundary region by visiting each NIO cell and creating
— ‘ elements that link the bS segment passing through it to the
— ——\ ' interior of the solid.

E — - V A% There are three main issues in this process: to devise a
'\ + «—f systematic way to insure that all NIO cells are visited. to
j — - - create nodes on bS. and to associate bS nodes with existing
! - — bi1S nodes to form valid elements.

— . . j All NIO cells can be visited by an exhaustive scan of the
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ll Fig. 10 Examples of automaticaily generated FE meshes.
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lowest-level grid, or by tree traversal, or by traversal of bS.
Since no single approach seems t0 offer substantial advan-
tages we use grid-scan for generating the initial mesh and,
because operations tend to be more localized. tree-traversal
for remeshing and reanalysis.

Figure 7 shows bS nodes P1, P2, P3 that are created in the
following manner. Vertices of b$S within each NI1O cell (e.g.
P2 in Figure 7) are tagged as such and are always used as
finite element nodes. The vertices of bS are available explic-
itly if § is represented in boundary format. If only a CSG
representation is available. as in our system. a limited form
of boundary evaluation [17] must be performed. In 2-D. the
CSG primitives that intersect an NIO cell are themselves

Fig. 12 Substructures at various levels during assembly.

intersected to generate candidate bS§ vertices; the candaidates
are then classified to identify true bS vertices. The anz.ogous
3.D .operations amount {0 constructing a wireframe repre-
sentation from a CSG representation. Additional bS nodes

are created by intersecting bS with the boundaries of the

NIO cells (P1 and P3 in Figure 7).

The generation of valid elements within an NIO cel.
straightforward if the cell does not contain bS§ vertices
(corner nodes): nodes on bS and biS belonging to the same
NIO cell are simply linked to form quadrilateral and triangu-
lar elements (see the lower left portion of Figure 8). The
treatment is more involved when a corner is present.

is

a

detailed explanation is in [8]. Briefly. the corner node is

linked to bS and b/S nodes within the cell to form a web of

triangular elements (Figure 8). To avoid generating elements

with poor aspect ratios. the distances

between nodes are -

checked by using a node neighborhood test. and closely .
spaced nodes are merged into single nodes on bS. Figure 9 |

provides two examples of this process.

The FE mesh is complete at the end of stage 2 of the 3

design procedure. A regular mesh of quadrilateral elements

in the interior results from a direct mapping of IN cells. On

the boundary, NIO cells are associated with quadrilateral
and triangular elements. It is important to note that the FE
mesh inherits the spatial addressability and structure of the
hierarchical grid because elements and substructures are
associated with the quadrants of the original decomposition.
Figure 10 shows two examples of meshes generated by our
automatic procedure.

The Shephard-Yerry (SY) boundary region meshing algo-
rithm performs in/out tests on the midpoints and quarter- '

points of the edges of NIO cells, and then maps each NIO

cell into one of a finite number of cut-quadrant forms: each

cut quadrant is then meshed. (We avoid such geometric
approximations by computing exact points of intersection on

bS.) The final stages of the SY algorithm move nodes in NIO
cells to the boundary, and then eliminate ill-formed elements |
by using a Lagrangian relaxation procedure to smooth a
triangulated version of the entire mesh. This last operation
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destrovs the uniform quadrilateral interior mesh and also
spatial addressability. because elements are not constrained
to rematn in their original cells.

Anilysis Of Hierarchical Meshes

We will now summarize a mesh-analysis procedure that
. for mesh generation has almost all of the data management

exploits the properties of the hierarchical. spatially address-
able meshes already described. Recall that data specifying
the finite elements in the initial mesh are accessed through
the lowest level of the hierarchical grid: Figure 4(b) shows
the types of data that are carmied.

One analvtical simplification is immediately obvious: be-
cause the interior mesh elements are uniform. their stiffness
matrices are identical if the material properties are homoge-
neous and thus only one stiffness matrix need be computed
for all of the interior elements. Other more important analyti-
cal simplifications accrue during both assembly and solution
of the system of equations because the hierarchical gnrid.
which so far has provided spatial substructuring for meshing.
can serve also as a multilevel analytical substructuring

; mechanism.

e

Assembly procedure. Most FE analysis procedures build a
single stiffness matrix to cover the whole domain. Our
assembler builds and stores stiffness matrices for every non-
OUT cell in the hierarchical gnd. This is done from the
bottom up (see Figure 11) by assembling son matrices and
**condensing out” interior degrees-of-freedom to build par-

' ent matrices at each level. The parent nodes of the interior
mesh with identical (uniform) sons to yield identical sub-

“structures and need be assembled only once. The mesh

generator tags identical interior-mesh nodes at all levels of
the tree to allow this.

Figure 12 shows an initial mesh and substructures at
various levels in the assembly process. Note in Figure 12(a)
that the initial mesh contains some higher-level substruc-
tures: these arise not from assembling lowest-level IN ele-

{ ments, but from intermediate-level cells that were classified
" as IN and tagged as substructures during stage 1 meshing.

(The identical stiffness matrices for lowest-level IN cells are
needed in the assembly process only when IN elements must
be assembled with elements in NIO cells.)

Solution. Figure 13 illustrates various stages in the solution
process. After loads and boundary conditions are attached to
the root structure, the FE solver computes the displace-
ments of all nodal points on the boundary, i.e., the nodal
points of the root substructure as in Figure 13(a), and then
traverses down the tree, recovering displacements of sub-

 structure nodes at each level.

The displacements at all levels are saved in data records
accessed through the hierarchical grid. and the iowest-level
displacements are used to compute the stresses in the
elements. Figure 14 shows the displacements and average
value per element of a stress component. The displacements
in Figure 15 are exaggerated for clarity. All analyses here are
linear-static, based on linear isoparametric elements. For
nonlinear analysis. where displacements can be large. spatial

addressability is still maintained via a backward mapping
that associates each displaced element to the onginal grid.

Remarks

Our experience with this substructuring approach to anal-
ysis leads to some conclusions. The hierarchical gnd used

facilities needed for analytical substructunng. The comput-
ing time and storage requirements for internal-element as-
sembly are substantially reduced. We have not yet compared
the solution efficiency of our tree-traversal method with that

/
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Fig. 13 Nodal dispiacements at stages of the solution process. I
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of standard solvers. in part because we have made no effort
to optimize our code. However. the incremental reanalysis
facilities described later clearly outclass standard solvers
when it comes to adaptive analysis. Note that solution via
tree traversal does not require the normally expensive global
element- or node-numbering schemes used by standard
solvers to minimize bandwidth or wavefront. Finally. sub-
structuring based on trees lends itself naturally to parallel
processing.

In general. substructuring has proven to be efficient [18]
and our particular approach to substructuring seems promis-
ing for nonlinear as well as linear analysis. In many practical
problems (e.g. contact problems. fracture mechanics. and
localized plasticity). nonlinear behavior occurs in isolated
regions. and spatially localized analytical methods should
prove to be efficient. For example, during analysis, regions
that become nonlinear can be tagged in the grid and specially
handled. In other types of problems one might want dis-

placements and stresses only in small cntical regions. and
again spatially localized methods seem very appropniate.

Self-Adaptive Incremental Analysis

level of the grid; the mesh has been analyzed and the resuits
stored in the grid (e.g. **f"" in Figure 4): and evaluation of the
results (discussed next) has indicated that refinement is
needed in a particular spatial region, say that represented by
the mesh fragment in Figure 16(a).

Two avenues for refinement are available. h-refinement
and p-refinement. In p-refinement. illustrated in Figure
16(b). successively higher-order shape functions arc as-

ed and a new matrix is computed from the new shape
function. No new tree nodes are generated, but the size of
the stiffness matrix increases.

Assume that a mesh has been constructed at the lowest

signed to the element formulation. To refine a particular
element. the old stiffness matrix for the element is invalidat- -

r—o—¢ ¢
® ®
*—o—»

(a)
Fig. 16 Schemes for mesh refinement.

P-refinement (b)

H-refinement (c)
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Fig. 17 Two stages of h-refinement.

In h-refinement existing elements are subdivided into
smaller elements of the same type, as in Figure 16(c). To
improve the geometric accuracy, localized h-refinement is
done on the original geometric model rather than on the
current finite element approximation. Thus, to refine a
particular element. one deletes the element. creates and
classifies new vertices and nodes, and inserts the smaller
new elements into the grid. Discontinuities of displacements
along edges where smaller elements abut on larger elements
are avoided by using constraint equations. These are indicat-
ed by the circled nodes in Figure 16(c).

Figure 17 shows examples of localized refinement. Note
that successive h-refinements improve the geometric ap-
proximation of the original solid. A maximum cross element

grading ratio of 2:1 is maintained during refinement.

Storage for the new entities created by h-refinement could
be provided by adding a whole new bottom layer to the gnd,
but this would be wasteful unless very extensive h-refine-
ment is needed. If the h-refinements are sparse, small
localized explicit schemes or linked-list methods are more
efficient.

Now assume that the original mesh has been refined in a
few regions using the methods just described. that the
affected elements have been tagged. and that the refined
mesh is to be reanalyzed. Clearly one wants to do incremen-
tal analysis. i.e., 10 use partial results from the carlier
analysis as much as possible. These results are available :
through the hierarchical grid. for example. using a tree of lS
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Original level

' Modified substructure

Fig. 18 Incremental reassembly.

New offsprings

O Unmodified substructure

matrices as in Figures 11 and 18.

The incremental FE assembler (Figure 1) traverses the
tree and by examining the sons of each parent node, detects
new offspring and computes the appropriate stiffness matn-
ces (Figure 18). Stiffnesses for unmodified elements are
recovered from storage. and new and old stiffnesses are
combined to form a modified substructure. If a node has no
new offspring. the complete old substructure is reused. The
incremental solver (Figure 1) works similarly. inspecting
tags on data to distinguish valid and invalid old results and
reusing the former whenever possible.

Self-adaptive algorithm. Our current algorithm for control-
ling seif-adaptive incremental analysis operates as follows
(see Figure 10). After a mesh (either initial or refined) has
been analvzed. error indicators are computed for each
element together with an estimate of the global error. If the
global error exceeds a specified limit, the system calls for
refinement and reanalysis in regions having large local
errors. This process continues automatically until the global
error estimate falls below the specified limit. This rather
simplistic control strategy seems to work in the cases we
have tested, but it is crude and some needed improvements
will be noted.

Considerable research has been conducted on the sources
and nature of errors in FE analysis, and on their relationship
to mesh refinement schemes [3—7]. Research pertinent to p-
refinement has vielded stgnificant results, whereas results on
h-refinement have been based mainly on 1-D studies and are
fairly primitive.

Thus far we have done little research on errors and our
current error measures are crude. As in (5], our element
error indicator (;) is merely the average of the stress jumps
(J, normal and tangential) across each element’s edges with
dimension (#) and assuming linear isoparametric elements:

s_1-voh 2
€= T 2 J: ‘ Jidr
normalized by the strain energy of the displaced model. Our

global error estimator is simply the sum of the element error
indicators. Figure 19 shows the computed values of the
element error indicators for a sample problem (a plate with a
hole under traction). Note that. in the vicinity of the hole.
the data imply high stress gradients because the error
indicators are high. Figure 19(b} shows an automatic refine-
ment resulting from this set of error indicators.

An improvement of the current algorithm would be 1o
replace the single global error indicator, which now serves as
a simple refine/don't refine switch. with a hierarchical series
of regional error indicators. These can be computed bottom-
up in the tree. and should force selective refinement in cases
where the overall average error is small but errors in small
regions are high. Additional improvements can be expected
as more is learned about the nature of errors in FE analysis.
Such research should also generate the information needed

to study the convergence properties of seif-adaptive

schemes.
Advantages and Disadvantages

~The main advantage of our approach is that mesh genera-
tion and mesh analysis are integrated and in effect collabo-

rate under the control of the error evaluator. Thus, the |

mesher only refines regions where refinement is needed. and
the analyzer only computes ‘‘what’s new'’ about a refined

mesh. This type of efficient adaptive behavior is, in our

opinion, the key to efficient automatic FE analysis.

Some can argue that mesh generation and mesh analysis

should not be integrated because integration precludes
“mixing and matching’’, i.e. being able to analyze. through
simple interface translators, a mesh from ‘“*any’’ CAD sys-
tem or preprocessor using ‘‘any’’ popular analysis package.
We believe that by the 1990s, however, the benefits of
integration will outweigh those of mixing and matching.
Spatially localized substructuring is the driving pnnciple
in both the mesh generator and mesh analyzer. This principle
derives from recursive spatial subdivision and is manifested

in our hierarchical grid and its underlying tree. The tree
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Fig. 19 Refinement driven by error indicator.
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might be viewed as a generalization of the structure de-
scribed in {19]. However. the latter is applied in subdomains
that are mapped to regular figures (squares and triangles),
and Rheinboldt's tree addresses the element partitioning
induced in the regular figures. By avoiding mapping we are
able to use the same structure for both meshing and analysis;
further, the regularity of our structure permits systematic
cell numbering and. hence. data access through calculated
addresses rather than through searching or looking in tables.
This *‘divide-and-conquer’" principle enables hard prob-
lems (such as object decomposition and equation-set solu-
tion) to be decomposed into smaller, tractable problems via
spatial partitioning. We note that spatially localized sub-
structuring. and spatial addressability in general. provide
powerful mechanisms for coupling FE methods and results
to other applications (e.g.. manufacturing process modeling)
through master data bases based on solid modeling.
Certain technical details already described. such as the

regularity of the interior mesh elements. are also advantages ;‘

of this approach.

Limitations. The main limitation of spatial subdivision
methods is that they produce meshes that are dependent on
orientation and position if the initial enclosing box is not
tight.

This is most easily seen in simple objects that have a
single, natural orientation. As such objects are rotated in z

fixed set of subdivision axes the induced meshes change.
often dramatically. Figure 20 is an example with a simplc |
object meshed in a nonstandard orientation. Skilled analysts 1
call such meshes “‘unnatural.”” and note that they usually

contain more elements than ‘‘hand-made’” meshes.

Spatial subdivision can be applied in non-Cartesian do- |

mains. For example. predominantly circular 2-D objects can

be meshed efficiently in polar coordinates by subdivision of :

(r.6). The meshes so produced can be managed through the

i
i
!
I
1
i
|
|

Computers in Mechanical Engineering July 198669




-
-
[

Fig. 20 Orientation and position dependence of meshes derived by spatia!l subdivision.

same hierarchical grid as is used for Cartesian subdivision
[20). Various schemes have been proposed for mixing subdi-
vision strategies to cater to objects having both circular and
rectilinear regions. but none seem promising [20].

The essential counter arguments are that ‘‘unnatural™
meshes will produce valid results if the elements are valid,
and that these results should converge under adaptive re-
meshing and reanalysis to a single set of (correct) results that
is independent of position and orientation. Experimental
evidence indicates that our approach exhibits such qualities.

Still To Be Resolved

Over the long term. four areas will require extensive
theoretical work to make truly automatic FE analysis possi-
ble:

® Error measures and indicators. Better measures than the
ones we use currently are needed. but they need not be
optimal if adaptive convergence can be guaranteed.

® Adaptive convergence. We have seen no experimental
evidence of divergence in the self-adaptive process. but
automatic analysis systems like ours will require human
monitoring to guard against divergence until strong conver-
gence properties can be guaranteed.

® Computational complexity. We think that spatial sub-
structuring techniques are asymptotically more efficient than
the methods used in current solvers. but we have no results
to prove or disproveé “this. Complexity and convergence
analyses. when coupled, should provide bounds on the
inherent cost of finite element analysis.

® Nonlinear analvsis. Thus far we have confined our efforts
to linear analysis but our approach to substructuring appears
promising for nonlinear analysis as well.

Two other issues are currently more pressing: extending
the systems to 3-D problems and handling loads and con-
straints automatically.

We have done 3-D work in parallel with our 2-D work. An
efficient publicly available interior mesher (octree generator)

has been created for solids describable in the PADL-2 solid -
modeling system [21. 22]. Figure 21 shows an example. The .
2-D spatial substructuring techniques for managing analysis. .
adaptive remeshing, and reanalysis extend gracefully to 3-D.
and indeed most of the 2-D control code is directly usabie in
3-D. The major unresolved problems are in stage 2 of the
automatic meshing procedure. i.e.. in the handling of NIO °
cells. Promising methods for resolving these probiems are
being studied.
The handling of loads and constraints is the only aspect of
2.D linear FE analysis that we have not yet automated. At !
present, loads and constraints are applied manually when the ?
assembler has completed its initial pass and the solver is
about to begin its initial pass. i.e.. at the transition between '
Figures 12(d) and 13(a). This raises two different questions.
First, there are no fundamental barriers to automating the .
application of loads and constraints at this stage of the
solution procedure. The problems are strictly of an engineer-
ing nature. Essentially, what mechanisms should be provid-
ed in a solid modeler to support the declaration of loads and
constraints (see Figure 1), and how should declarations be |
translated into mesh-node vector values? The translation
problem is straightforward given a good solution to the
declaration problem, and an experimental system with
enough power to handle load and constraint declarations 1%
already running under 3-D PADL-2 [23]. ‘
The second question is deeper. Should loads and con-
straints be applied at the outset, where they will influence
construction of the initial mesh, rather than after an initial
mesh has been built? This is certainly the case when meshex
are constructed manually, and part of the analyst’s skili s in
knowing how fine a mesh should be in a loaded or con-
strained region. Should our mesher be modified to mimic this |
skill? The only possible gain we see is efficiency and this
might be marginal because the current system alread) re-
fines meshes automatically to reflect loads and constraints .
but only after it has passed from initial mesh anal\sis to
adaptive remeshing and reanalysis.
In conclusion. we believe that the experimental system .
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described here and its underlying principles represent a
milestone on the road to truly automatic finite element

analysis. ]
| .
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